Total restrained domination in graphs with minimum degree two
نویسندگان
چکیده
منابع مشابه
$k$-tuple total restrained domination/domatic in graphs
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
متن کاملResults on Total Restrained Domination in Graphs
Let G = (V,E) be a graph. A set S ⊆ V (G) is a total restrained dominating set if every vertex of G is adjacent to a vertex in S and every vertex of V (G)\S is adjacent to a vertex in V (G)\S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. In this paper we continue the study of total restrained domination in...
متن کاملStratification and domination in graphs with minimum degree two
A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class). We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The Fdomination number of a graphG is the minimum number of red vertices ofG in a red-blue colori...
متن کاملTotal restrained domination in unicyclic graphs
Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex in V is adjacent to a vertex in S and every vertex of V −S is adjacent to a vertex in V −S. The total restrained domination number of G, denoted by γtr(G), is the minimum cardinality of a total restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We sho...
متن کاملTotal domination in partitioned trees and partitioned graphs with minimum degree two
Let G = (V,E) be a graph and let S ⊆ V . A set of vertices in G totally dominates S if every vertex in S is adjacent to some vertex of that set. The least number of vertices needed in G to totally dominate S is denoted by γt(G,S). When S = V , γt(G,V ) is the well studied total domination number γt(G). We wish to maximize the sum γt(G) + γt(G,V1) + γt(G,V2) over all possible partitions V1, V2 o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.04.039